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ABSTRACT

What is the shape of the set of similarity classes of triangles? In this senior project,
we explore and answer this question using moduli space theory. Euclid’s classical triangle
similarity theorems state that two triangles are similar if and only if they have the same
ordered interior angles or ordered ratios of side lengths. These two “angle-angle-angle” and
“side-side-side” similarity theorems are equivalent on nondegenerate triangles. However,
if we consider a sequence of triangles that flattens out and approaches triangle with zero
area, these theorems cease to be equivalent. The “angle-angle-angle” theorem gives rise to
a torus, while the “side-side-side” theorem results in a sphere. Since these two spaces are
not homeomorphic, neither can be the moduli space of similarity classes of triangles. In
this project, we provide explicit constructions of both the sphere and the torus as spaces of
triangles. We unify these two spaces by considering both types of similarity in our preprint
[BGGL24]|, where we prove that Dyck’s surface, the connected sum of three real projective
planes, is the a fine moduli space of labeled, oriented, possibly-degenerate similarity classes
of triangles.



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Prof. Eric Brussel for his unwavering
support, encouragement, and guidance that began on my first day of my freshman year at
Cal Poly. I would not be the person nor mathematician that I am today without him.

I would also like to thank Elijah Guptill and Kelly Lyle for their friendship and
collaboration. Section 3 is based on our work in the 2023 Frost Summer Undergraduate
Research program, and [BGGL24] is a coauthored preprint of ideas that came out of that
summer. Thank you for sharing your many wonderful ideas and entertaining my own.

Thank you to William and Linda Frost for providing generous financial support for my
research through a Frost Research Scholarship and two summer research stipends. And
thank you to Prof. Phil Bailey for taking a chance on a mathematics project as part of your
new scholarship program; it is an honor to be an inaugural Frost Research Scholar.

Thank you to my parents, Hans and Margi Goertz, for supporting me since day one.
Pursuing a career in pure mathematics is not a path without obstacles, but you never once
doubted that I would be up to the task.

Thank you to my friends and classmates for your support. Your attendance at my talks
and poster sessions over the past three years meant more than you could know. A special
thank you goes to my nonmathematical friends Lucas Grizzle, Quinton Yusi, Carley Niski,
and Emma Carter, for supporting me and my research, even when it lives so far outside of
your own disciplines.

And finally, thank you to the wonderful faculty and staff of the Cal Poly mathematics
department; you make this place feel like home. A special thank you goes to Prof. Rob
Easton for teaching me category theory, to Prof. Ryan Tully-Doyle for entertaining my many
“devastating” questions, and to Prof. Dana Paquin for her ongoing advice and mentorship.



CONTENTS

List of Figures

1.

1.1.
1.2.

2.

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.

3.

3.1
3.2
3.3.
3.4.
3.5.
3.6.

Introduction
Why moduli spaces?
Similarity Classes of Triangles
The Torus of Triangles
Introduction
The Triangle of Triangles
The Torus of Relative Arguments
The Torus of Triangles
Distinguished Subgroups
Absolute Similarity Classes
Measure
The Sphere of Triangles
Terminology & Definitions
Group action on [p]
Space of Triangles up to Similarity
Distinguished Families on the Sphere
The Measure
Additional Properties

References

N O Ot Ot W W W N

N DN NN == = =
co O Ut W O O © © N otow o



1.1
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
3.1

LisT OF FIGURES

Examples of Degenerate Triangles

The Triangles of Triangles

Relative Arguments and Orientation

The Plane of Relative Arguments

Euclid’s Elements Book III, Proposition 20

Gluing together the Triangles of Triangles

The Fundamental Domain of the Torus of Triangles
Dg Acting on Similarity Classes

The Flat Torus T

The Sphere of Triangles

© o 0o

10
12
13
15
17
23



1. INTRODUCTION

What is the shape of the set of similarity classes of triangles?

We explore and answer this question through the use of moduli space theory in this senior
project.

This report is organized as follows. First, we provide some motivation for why people
like to study moduli spaces. In Section 2, we explore the space obtained when considering
similarity classes of triangles as triples of angles (a, 8,v) such that a.+ 3+~ = 7. In Section
3, we examine another notion of similarity by explore the space obtained when instead
considering triangles by their vertices (A, B,C) € C? and then imposing an equivalence
relation on them. This is the well-known “shape sphere,” and we provide details on the
construction as well as a variety of observations.

In our followup preprint [BGGL24], we explore the rigorous categorical definition of
moduli spaces and stacks and prove that Dyck’s surface, the connected sum of three real
projective planes, is the fine moduli space of labeled, oriented possibly-degenerate similarity
classes of triangles. We also prove that Dyck’s surface is a smooth manifold.

1.1. Why moduli spaces? Before discussing the more technical notion of moduli spaces,
we begin with a discussion of parameter spaces. A parameter space is a space that classifies
a given collection of objects that one is interested in.

We consider a familiar example. Let £ be the set of all points on the surface of Earth.
Thne the sphere S Zisa parameter space for £, since points on Earth are in clear one-to-one
correspondence with points on the sphere. Furthermore, points that are “close” on Earth
are “close” on the sphere, so there is a notion of continuity. We also know that the sphere
is the “best” object to classify points on Earth. In particular, any two-dimensional map
projection must distort areas on Earth somehow, and they all descend from the sphere. In
a sense, the sphere parameterizes points on Earth “universally so.” Armed with this sphere,
we can answer all sorts of interesting questions about our underlying set £, such as

What is the probability that a random point on the surface of Earth is in the ocean?

By analogy, finding a parameter space for a more abstract set than &£ requires
mathematical cartography, charting out an abstract world.

1.2. Similarity Classes of Triangles. The “abstract world” we choose to explore is the
space of all Euclidean plane triangles up to similarity.

Two Euclidean plane triangles are similar if one can be scaled, rotated, and /or translated
to agree with the other. Finding a moduli space for similarity classes of triangles is a frequent
first exercise for those learning moduli space theory, and so we are certainly not the first to
explore this topic.

Euclid proved that two triangles are similar if and only if they have the same interior
angles in the same order [Euc56]. That is known as “angle-angle-angle” similarity. Similarly,
his “side-side-side” similarity theorem states that two triangles are similar if and only if
they have the same ratios of side lengths. Critically, these theorems are equivalent only on
nondegenerate triangles, triangles with nonzero area, triangles whose three vertices are not
collinear. Some examples of degenerate triangles are illustrated in Figure 1.1.



A B C A=B C A=B=C

Figure 1.1. Example multiplicity 1, 2, and 3 degenerate triangles

Why would anybody care about “flat triangles,” triangles with zero area? These
degenerate triangles are the limit points of sequences of nondegenerate triangles, and so
if we want to have any hope of our moduli space being closed in the metric topology, then
we must consider these limit points.

It turns out that the angle-angle-angle and side-side-side theorems are no longer equivalent
on degenerate triangles. Why? Given a degenerate triangle where exactly two vertices
coincide, there is no canonical choice for the interior angles at the coinciding vertices.
Similarly, a degenerate triangle with three distinct collinear vertices will have interior angles
0,0, 7 in some order, but these angles do not uniquely determine the ratios of the side lengths
of the triangle.

This nonequivalence of these theorems is manifested in the different topologies of the
parameter spaces that they induce. Under angle-angle-angle similarity, we get a torus of
triangles. Side-side-side similarity gives rise to a sphere of triangles. These are clearly
distinct spaces, and so neither can be the moduli space of similarity classes of triangles, for
they must parameterize these families “universally so.”

The torus is missing degenerate triangles consisting of three distinct collinear points,
while the sphere is missing degenerate triangles where exactly two vertices coincide. In
[BGGL24], we blowup the two spaces at the points where these degenerate triangles are
missing. It is a result of Walther von Dyck that the blow up the torus at one point is
homeomorphic to the blowup of a sphere at three points [Dyc88]. We show that Dyck’s
surface, the result of these blowups, is a smooth manifold and a find moduli space for the
set of similarity classes of triangles.



2. THE TORUS OF TRIANGLES

2.1. Introduction. The study of triangles in the plane dates back to Euclid and is one of the
oldest and most thoroughly investigated subjects in all of mathematics.!
Straightedge-compass constructions, connections with Apollonian problems, and the
Euclidean geometry of the plane have been studied exhaustively. It is a fascinating, elemental
subject. For a glimpse at the area’s extent, the reader is invited to browse a list of thousands
of geometrically defined triangle “centers”, see [Kim98|.

For our purposes, a moduli space is a space of points that represent members of a
set of mathematical objects, and whose geometry has a natural relevance to the objects’
characteristic structures. Thus the moduli space is useful for studying the families of these
objects as a whole, to make statistical calculations, or just to visualize one family in the
context of others.

Our paper was motivated by the question of what happens near the boundary of a
commonly drawn moduli space of triangles called the triangle of triangles, see e.g. [ES15,
Figure 2|. In our study of continuous families of triangles — ones parameterized by continua
of real numbers — we wondered what would happen to a family that “breached the border” of
this space, a border that appears not to consist of triangles at all, but rather of degenerate,
“flat” triangles. As the renowned number theorist Barry Mazur put it, it is precisely in
the meighborhoods of such regions in many of the moduli spaces currently studied where
profound things take place. (|[Mazl8, p.7|). Though it may seem unlikely that anything
profound should occur in such an elementary example (see [Maz18, p.7]), we show how the
space of similarity classes of triangles (the triangle of triangles) extends naturally to the
space of similarity classes of oriented triangles, to form an abelian Lie group: a topological
torus of similarity classes of labeled, oriented triangles. We call it, of course, the torus of
triangles.

The problem of constructing a moduli space of triangles is frequently posed as an
elementary exercise that demonstrates the properties and challenges of more complex spaces.
The idea is suggested by Lewis Carroll, who in “Pillow Problem 58” asked for the probability
that a randomly chosen triangle is obtuse (see [Dod58|). As pointed out in [CNSS19], the
first mention of it in the literature appears to be in The Lady’s and Gentleman’s Diary
[Woo61], where W.S.B. Woolhouse asked the following: "In a given circle a regular polygon
is inscribed, and lines are drawn from each of its angles to the center of the circle. Required
the ratio of the number of the triangles which are acute-angled to that of those which
are obtuse-angled." This question has intriguingly different answers, depending on the
construction of the space.

Literature. There have been many constructions of moduli spaces of triangles, including
[CNSS19], [ES15], [Guy93], [Ken85], [Por94].

The article [Por94| makes a convincing case that a reasonable moduli space should admit
a transitive action by a compact group. The points are thereby assigned equal priority, and
the different regions can be assigned finite measures since the group is compact. Portnoy
further suggests that the “right” distribution should align with the spherically symmetrical
construction IE”S(]R) using the six coordinates of the triangle’s three vertices (up to scalar
multiplication). This idea is championed in [ES15], see below.

IThe contents of this section is the preprint that I coauthored with Eric Brussel [BG23|. It has been
reproduced here with minor modifications.



In [CNSS19] a space with a transitive action by a compact group is constructed that
generalizes to n-gons and introduces valuable pedagogical techniques. The paper succeeds
in obtaining a uniform distribution of triangles, but at the expense of distorting the relative
measures of triangles in order to make the plane conform to a sphere. This has the effect of
over-valuing short side lengths, hence obtuse triangles, and indeed their computation of the
obtuse-to-acute ratio is much higher than the 3-to-1 value advocated by Portnoy and many
others.

Since our construction actually is a compact Lie group, it admits a transitive action by
a compact group, and so passes Portnoy’s test. Furthermore, the measurements we make
agree with those of [Por94| based on the P° example, although our measure appears to be
quite different, as noted in [ES15, 1.1].

In the excellent treatment [ES15], which aims to rejuvenate the study of shape theory, the
moduli space is constructed as in [Por94], and the focus is on the normal distribution on the
six coordinates of three vertices, which they apply to obtain a probability P(O) = 3/4 for a
random triangle to be obtuse. They produce our angle-based moduli space in passing, and
apply the uniform angle distribution to obtain the same answer P(O) = 3/4 for a random
triangle to be obtuse. They point out how curious it is that these two spaces give the same
result, in spite of the fact that they come from fundamentally different measures.

2.2. The Triangle of Triangles.

Definition 2.2.1. (a) A triangle is a plane figure consisting of three vertices and three
straight edges connecting them. At each vertex is a positive interior angle, which is
the angle between incident edges. If traversed counterclockwise around the vertex, the
value of an interior angle is between 0 and 7, inclusive; otherwise it is between —7 and
0. If all angles are traversed counterclockwise they sum to 7, otherwise —m.

(b) A triangle is degenerate if its vertices are colinear, in which case at least one interior
angle is zero, and nondegenerate otherwise, in which case all interior angles are convex.

(¢) Two nondegenerate triangles are similar if the absolute values of their interior angles
are equal, in some order.

(d) A labeled triangle is a triangle together with a labeling A, B, C of its vertices.

(e) A nondegenerate labeled triangle has positive orientation if its labeling is lexicographic
when the vertices are traversed counterclockwise, and mnegative orientation if it is
anti-lexicographic when traversed counterclockwise. A degenerate triangle has zero
orientation.

(f) Notation. We write AABC for the triangle with vertices A, B,C € R?, [AABC] for
its labeled, oriented similarity class, and A[0;, 04, 05] for the labeled, oriented similarity
class with angles 01, 05, 65 assigned to the ordered vertices A, B, C. We write |[AABC]|
and | A[6y, 05, 05]| for the absolute (unoriented, unlabeled) similarity class of the triangle
AABC.

Remark 2.2.2. A scalene triangle A ABC has a single absolute similarity class, but twelve
labeled, oriented similarity classes: six corresponding to the six ways of assigning the
three angles assigned to the three vertices, and two for each orientation, corresponding to
whether the labeled vertices are in lexicographic or anti-lexicographic order when traversed
counterclockwise in the plane.

2.2.3. Triangle of Triangles. We next use interior angles to define a pair of triangular planar
regions that parameterize the similarity classes of labeled, oriented triangles, and provide a



uniform metric with which we will compute relative measures of different triangle types. In
Section 2.4, we will show that they naturally glue together on their degenerate boundaries
to form an abelian Lie group homeomorphic to a torus, called the Clifford torus. The fact
that it is a group solves the uniformity problem raised in [Por94|, and addressed in [CNSS19|
for labeled, oriented similarity classes.

Definition 2.2.4. The triangle of triangles and the shadow triangle of triangles are the
planar regions

7——={(04a5a7)304+3+’}’=—7ﬂ —7TSOé,57’YSO}

The interiors 7, and 7_ are the points satisfying afy # 0, representing the similarity
classes of nondegenerate labeled, oriented triangles. The borders 07, and J7_ are the
points satisfying a8y = 0, representing degenerate labeled triangles (see Figure 2.1), for
which similarity has yet to be defined. Since «, 8, are interior angles, A, 3,v] and
—Ala, 8,7] := A[—a, =8, —v] have the same absolute measure at the vertices A, B, C, but
when drawn on the plane those vertices are in opposite orders when traversed
counterclockwise.

2.2.5. Tazxonomy of Triangles. The six main types of triangles are equilateral, isosceles,
scalene, right, acute, and obtuse. In the triangles of triangles in Figure 2.1 the three altitudes
represent isosceles triangles, and the darker inscribed triangular regions represent acute
triangles. Thus in the set of similarity classes of nondegenerate labeled, oriented triangles
we find:

(a) Two nondegenerate equilateral triangles *A[%, %, 5]

31
(b) Nondegenerate isosceles triangles Ala, o, 7], Ala, 8,a], or Ala, B, 5].

(c) Nondegenerate right triangles A[c«, 8,v] with either «, 8, or v equal to ig.
(d) Nondegenerate scalene triangles A[a, 8,v] with «, 3, all distinct.

We extend these classifications to degenerate triangles as follows.

Definition 2.2.6. We say a degenerate element A = A[q, 8,~], which by definition has at
least one zero interior angle, is

b )
) isosceles if A is equilateral or A € {A[O, +2, 7] A[£5,0, 23], A
(c) right if isosceles;
)

scalene if A € {A[0,8.7], Ale,0,9], Ala,3,0] : a, B,y # 0, %, ¢

I+
SIE]

——

2.3. The Torus of Relative Arguments.



(a) Triangle of Triangles T, (b) Shadow Triangle of Triangles 7_

Figure 2.1. The Triangles of Triangles

In this section we construct another space whose general points represent similarity
classes of nondegenerate labeled, oriented triangles, and whose continuity leads to a natural
definition of similarity for degenerate labeled triangles, which form the border regions 07,
and J7_ above, and with which we will glue 7, and 7_ together. The idea is based on the
observation that a nondegenerate labeled, oriented similarity class [A ABC] is completely
determined by the two ordered arguments £4 and &g relative to C. The triangle can
then be inscribed in the unit circle, as in Figure 2.2, where we write the arguments with
representatives between 0 and 2.

Positive Orientation Negative Orientation

Figure 2.2. Relative Arguments and Orientation

2.3.1. Torus of Relative Arguments.

Construction. Let S' denote the circle Lie group, R' = (R', +) its Lie algebra, and exp :
R' — S' the exponential £ — elg, which is a homomorphism. We call £ an argument.
The R-linear homomorphism &, : R® — R defined by 6, (&1, &,6) = (& — &, & — &)

determines a commutative diagram

0— R —2 5 R 3R 0
leXP leXP lexp
1— st 2y (") 27— 1
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where A is the diagonal embedding, and 7 = (S')? is a torus. We call R the plane of relative
arguments. The maps §, and ¢ are split by the R-linear map o, : (&1,&) » (&1,&2,0) and
the homomorphism o : (eiél,eigz) - (ei51 e, 1), respectively. Since left multiplication by
S' is the same as the (left) rotation action by SO(2), we have

T = (S")’/s0(2)

On the other hand, since the kernel of exp consists of the lattice {(2km,2(x) : k, £ € Z},
7 = R?*/2rZ?, which is the usual definition of the Clifford torus.

Definition 2.3.2. (a) The torus of relative arguments is the abelian torus group T
constructed above, with points interpreted as ordered triples of points on s! up to
rotations, each represented by a unique ordered triple (eiEl , ei£2, 1), and with pointwise
product

(eiﬁl ’ ei527 1)- (ei§'1 ’ elflz, 1) = (ei(§1+§'1)7 ei(§2+§'2), 1).

(b) A triple (ei&,eif?, 1) is nondegenerate if the three points are distinct, and degenerate
otherwise. Thus a degenerate triple satisfies & = 2kw, & = 2km, or & — & = 2kx for
k € Z.

(¢) A nondegenerate triple has positive orientation if the forward (left-to-right) reading
of coordinates in the triple goes counterclockwise around Sl, and negative orientation
otherwise. A degenerate triple has zero orientation.

2.3.3. Connection of T to Triangles. Each point (£1,&;) in the plane of relative arguments
maps to a point (eigl,eigz, 1) on T, corresponding to a unique similarity class of labeled,
oriented triangle. We illustrate the plane in Figure 2.3, with a shaded fundamental domain
0 = &,& < 2w, and solid lines representing the preimage of the degenerate triangles on
T. The fundamental domain is divided into two parts according to the orientations of the
corresponding triangles.

The construction of a borderless parameter space 7 arising from Figure 2.3 depends on
the incorporation of orientation. In this space, a continuous family changes orientation
when it crosses the degenerate border. In moduli spaces (such as 7,) that do not take
orientation into account, a path that intersects the border transversally has a singularity,
and must reverse course to stay in the space. By adding orientation we obtain what we feel
is a more natural space. We will show later that the usual space of (unoriented, unlabeled)
similarity classes is a topological quotient.

A

&2

,2) T, 27)

AN
~

~

Figure 2.3. The Plane of Relative Arguments
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W 1

P D
Figure 2.4. Euclid’s Elements Book III, Proposition 20

2.4. The Torus of Triangles. In this section we make the correspondence between points
on the torus and labeled oriented similarity classes more explicit by defining a map 7, U
T_. — T from the triangles of triangles of Definition 2.2.4 to the torus of Definition 2.3.2
giving us an explicit interior angle description of the triangles represented by points of T,
and inducing a definition of similarity for degenerate triangles. This also serves the purpose
of imposing on 7 the standard uniform measure implicit in 7, U 7_.

2.4.1. Map from Triangles of Triangles to Torus of Relative Arguments.

Construction. A point on [AABC] = Al«, 8,v] € T, satisfies a, 8,7 € [0, 7] and a+ S+ =
m, and Ala, 8,v] € T_ satisfies o, 8,y € [-7,0] and a + 8 + v = —m. Proposition 20 of
Euclid’s Book IIT ([Euch6], see also [Joy98]) states, in a circle the angle at the center is
double the angle at the circumference when the angles have the same circumference as base.
Therefore if we inscribe the similarity class of a nondegenerate triangle A[«, 8,v] in S' with
third vertex C' = 1, we can compute the arguments of A and B from « and (3, and so define a
map from the triangles of triangles to the torus of relative arguments. To wit, if the triangle
is positively oriented then «, 5,7y > 0, and then P = B, Q) = A, and 8 = %f > 0 in Figure 2.4.

Since £ is the counterclockwise argument of A, A = 2P i2m=20) _  =i2a

, and similarly B = e
The resulting triple (emﬁ7 e_im, 1) is positively oriented, since the left-to-right reading goes
counterclockwise around the circle. If the triangle is negatively oriented then «, 3,y < 0, and
P=AQ=B,and a = —%f < 0. Then B = ¢~ **, and similarly A = e 12m=28) 2 (128 g
time the resulting triple (eiQ’B, e 1)
definition.

is negatively oriented. This motivates the following

Definition 2.4.2. Suppose A = Ala,8,7v] € T, uT_, with «, 3,7 € [0, 7] if A € T,, and
a,B,v € [-7,0] if A € 7_. Define
p:T.uT. — T
Ala, B,7] — (€772, 1)
Theorem 2.4.3. The map p is surjective, preserves orientation, and inscribes Ala,8,7] €
To UT- in'S* as the triple (e*?,e72% 1).

Let 9(O(T,UT.)) denote the siz vertices of the border O(T,UT_), and let (0T, ) L (0T_)°
denote the interior of the border. Assume 0 < o, < w. Then the degenerate points of T
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have preimages

11,1,1
p—l( 28 1 1

p—l( —120471
p—l( 12[3 12,8 1

{A[£7,0,0], A[0, +7,0], A[0,0,£7]} = (O(T+ uT))
0,8,m =Bl € (T.)°, Al0, -7+ 8,-B] € (9T_)"}
a,0,7—a] € (0T:)°, A[-7+«a,0,-a] € (0T_)°}
™= 3,8,0] € (OT.)°, A[-B,~7 + ,0] € (9T)°}

Thus the preimage of (1,1,1) € T consists of the siz vertex points of T. U T_, and the
preimage of every other degenerate point of T has two preimage points, one on (07.)° and

one on (0T_)°.

[>>[>[>

€

€

) =A{al
) =A{al
) =A{al
) =A{al

Proof. By Construction (2.4.1), p inscribes every nondegenerate oriented triangle A[a, 3,7]
in S" as a triple of points (P, Q, 1) with the same orientation. Conversely, every such triple is
obviously in the image of such a triangle. Therefore p is surjective and preserves orientation
on nondegenerate points of 7. We will show surjectivity at the degenerate triples below by
explicitly computing their preimages.

Suppose A = Ala,f3,7] is degenerate, i.e., has orientation zero. To show p(A) is
degenerate is to show that two of the points {ei2ﬂ,e_i2a,1} are the same. Since A is
degenerate, by Definition 2.2.1 one of its interior angles «, 8 or v is 0. If it’s a or 5 we
are done, because then e = 1 or ¢ = 1. If it’s neither then v=0,a+ = +m and
e = e_iza, and again we are done.

Now we check the preimages. If p(A[c, 3,v]) = (1,1,1) then 28 = 2kn for some k, hence
[ is a multiple of 7, and similarly for «; since the sum of all three is 7, the same goes for

. Therefore Ala, 3,v] must be one of the six vertexes, and all, of course, map to (1,1, 1).
The remaining degenerate triples contam exactly two distinct points: (P,1,1),(1,Q,1), o

(P,P,1). Putting P = ¢ and Q = “ shows p maps the stated preimages onto the
corresponding degenerate triples. Slnce every degenerate triangle is accounted for in some
preimage, this completes the proof. g

Definition 2.4.4. Degenerate triangles in 07, U OT_ are similar if either each has two
zero interior angles, or they share one zero interior angle, and the other two angles are
anti-transpositions of each other. Thus the distinct similarity classes are of form
A[7,0,0] = A[-7,0,0] = A[0, 7,0] = A[0,0, +7]
A[Ov677] = A[Oa -7, _ﬁ] A[O{,O,’}/] = A[_'Y,O,_Oé] A[Oé,ﬁ70] = A[_ﬁv —Oé,O]

Using these identifications we immediately obtain the following.

Corollary 2.4.5. The set of similarity classes of labeled, oriented, possibily degenerate
triangles is parameterized by the abelian torus group

T uT-

ar.~or =T

where the gluing of border points is determined by p as in Theorem 2.4.3 and Figure 2.5,
identifying all siz vertex points with the identity (1,1,1) € T, and pairs of (degenerate)
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(0,0,7)

(07 07 _ﬂ—)
Figure 2.5. Gluing together the Triangles of Triangles

border points as

0T, +—— 07T %7’
Al0,8,9] = Al0,—y,-B] —— (7,1,1)
Ala,0,7] = A[-7,0,—a] ——(1,e77%1)
Ale, 8,01 == A[-B,-0a,0] ——(*’ 7 1)

2.4.6. Image in T of Labeled, Oriented Triangle Types. An element of T is given by a triple
in S* whose third entry is 1. In this subsection we describe the basic types as they appear
inS'.
(a) By Definition 2.2.1 a degenerate triangle has at least one zero interior angle, so the
image of its similarity class under p is (¢’,1,1), (1,€, 1), or (e, e, 1), inscribed in
S! as a chord. Specifically, on similarity classes we have:
o The degenerate equilateral triangle has image the identity triple (1,1, 1).
o The three degenerate isosceles triangles that are not equilateral have images the
diameter (-1,1,1), (1,-1,1), or (-1,-1,1).
o The (infinitely many) degenerate scalene triangles have images (eig7 1,1), (l,eif, 1),
or (eig,eig, 1), with et # 1.

(b) Nondegenerate triangles have positive or negative orientation, and all angles of absolute
value between 0 and 7. Specifically, on 75 U 7= we have:

i27r/3’ ei4ﬁ/3, 1)

e The two nondegenerate equilateral triangles have images (e and

(62'47'r/37 ei27r/37 1)

e The (infinitely many) nondegenerate isosceles triangles have images (e, 67, 1),
(6225, e, 1), or (625, e, 1), depending on whether the vertex is at C, B, or A.
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e The (infinitely many) nondegenerate right triangles have images (e, -1,1),
(—1762571), or (elg, —elE, 1), depending on whether the right angle is at A, B, or
C.

e The (infinitely many) nondegenerate scalene triangles have images (615176152, 1) not
of any of the previous types.

2.5. Distinguished Subgroups.

2.5.1. Subgroup Structure of Distinguished Triangle Classes. The group structure of T is
compatible with triangle types, in the sense that the latter form basic algebraic structures:
elements of finite order, subgroups, and cosets.

Theorem 2.5.2. The standard triangle types form the following distinguished subgroups
and cosets of the torus of triangles T .

(a)

The three equilateral triangle classes form a group of order 3, with the two nondegenerate
classes as generators and the degenerate class as the identity.

The three degenerate nonequilateral isosceles classes each gemerate a group of order 2,
with the degenerate equilateral class as the identity.

The siz nondegenerate right isosceles classes generate three cyclic groups of order 4,
each containing a degenerate nonequilateral isosceles class (of order 2).

The three types of isosceles triangle classes {l4,lp,lc}, distinguished by vertex, form
three circle subgroups.

The three types of degenerate classes {D4,Dp, D¢}, distinguished by vertex, form three
circle subgroups.

The three types of right triangle classes {R4, Rg, Rc}, distinguished by vertex, are cosets
of the degenerate subgroups D;, and their images are the unique elements of order two
in the quotients T |D;.

Proof. For (d),(e), and (f) it will suffice to write down the stated subgroups; checking they
form subgroups is trivial. In the following we refer to the lie algebra of relative arguments,
whose fundamental domain, divided into positive and negative orientations, is Figure 2.6.

&
(0,2m)

(0,0) ) (2r,0) &

Figure 2.6. The Fundamental Domain of the Torus of Triangles
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e In the plane of relative arguments, the additive groups d4 = {(£,0)}, dg = {(0,&)}, and
de = {(&,€)} define three subgroups of degenerate triangles in 7 = o(7) € S':

Da={(c*,1,1)} Dp={(1,e",1)} D¢ ={(e* e 1)}

e The three cosets ry = (0,7) +d4, rpg = (7,0) +dp, and rg = (0,7) + de correspond to
the right triangles:

(1,-1,1) - D = {("*, -1,1)}
Rp = (=1,1,1) - Dp = {(-1,¢",1)}
Ro =(1,-1,1) - Do = {(e, =€, 1)}

X
hS
1l

The degenerate right triples comprise the set {(1,-1,1),(-1,1,1),(-1,-1,1)}.
e The subgroups iy = {(£,2)}, ip = {(2¢,€)}, and ic = {(& —-€)}, correspond to the
isosceles triangles in T

= {50} e = {0} o= {4 1)
(a): The two nondegenerate equilateral classes i(ei%/ 3,ei4ﬁ/ 3, 1) are in the intersection
l4 Nnlg Nl of the isosceles subgroups, marked as the centroids of the yellow and gray
triangles of Figure 2.6. They are mutually inverse, forming together with the degenerate
equilateral class (1,1, 1) a subgroup of order 3.

(b): The three degenerate nonequilateral isosceles classes form the set
(™ 1,1), (1,7, 1), (7, €7 1))

marked by #*’s in Figure 2.6. Each is the unique order-two element of the subgroups
D4,Dg, D¢, respectively.

(c): The six nondegenerate right isosceles classes form the set

{+(6i7r/276i7r71)’+(ei7r/2 61’377/271)’+(ei7'r,ei37'r/2,1)}

L = 9 =

marked with square points in Figure 2.6. Each has order 4 and square equal to one of the
three degenerate nonequilateral isosceles classes. |

Remark 2.5.3. The symmetry of the plane of relative arguments suggests some other
families not included in the standard taxonomies:

e The perpendicular “anti-isosceles” subgroups ij = {(-2¢,8)}, iJE',» = {(&,-2¢)}, and ié =
de = {(§,€)} define subgroups

L —i26 i L i€ —i2 L £ i
=50 p= () 15 =Do = {(¢F, e 1)
e The distinguished coset (0,7) +ic = {(&, 7 — &)} defines the coset of “anti-right” triangles.
(1,-1,1) 1o = {(¢", =7, 1)}

When graphed in Figure 2.6, the above objects make a complete graph with nine vertices.
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v
.
.
.
‘e
.

Figure 2.7. Dg Acting on Similarity Classes

2.6. Absolute Similarity Classes. Let
£S5 1= S3 X (xe) = {e, £(123), £(132), £(23), +(13), £(12)}

a group of order 12 isomorphic to the dihedral group Dg = (r,s), where in our notation
r = —(123) is counterclockwise rotation of a regular hexagon by /3, 7> = —e, and s = —(12)
is reflection about the horizontal axis:

) s
A
The permutation representation
+S3 — GL3(R)
defines an action on R® that stabilizes A. Explicitly,
+95 x R® — R?
(£0,(01,02,03)) = (£0,(1), £05(2), £0,(3))

Since both ¢ and the splitting map o are R-linear, the induced representation +S3 — GLqy
acts on the plane of relative arguments R?. Explicitly, +o(6; — 03,60y — 05) = +(0,01) —
00(3):05(2) = Oo(3))- The image of the corresponding two-dimensional permutation
representation is

ie=i[1 0} +(123) = +[ 7] [1)] i(132)=i[0 :1]

0 1 - L
+(12) = J_r[‘l) é} +(13) = ’—’[j ﬂ *(23) = i[é :ﬂ

Since these actions do not change the (unordered) absolute values of the arguments in a
triple, they stabilize the kernel of exp, and induce actions on (51)3 and 7. On S' negation
acts as complex conjugation, which reverses the orientation of a nondegenerate triple since
it turns an ordering that goes counterclockwise to one that goes clockwise.

The induced action on interior angles in T+ 'fT‘ is represented by Figure 2.7, in which the

triangles of triangles are inscribed in a regular hexagon. The A,B,C-axes and
—A, —B, —C-axes are the same as those in Figure 2.1, and the gluing is AB < DF, BC <
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ED,AC < EF. The 2 X 2 matrix action on relative arguments shows the induced action is
given by the map

+55 Dgt Se
—(123)«—— r ——(AEBFCD)
—(12) +—— s —— (AB)(DF)
—e +—— 3 —=(AF)(BD)(CE)
(123) +—— ,*+— (ACB)(DFE)
(12) +—— ;34—=(AD)(BF)(CE)
(13) +—— Sg—=(AE)(BD)(CF)
(23) +—— rs—(AF)(BE)(CD)
13) «—— ;25— (AC)(EF)
23) +—— pis—— (BC)(DE)

The elements that preserve orientation form the subgroup
D3 = (7“2,8> < ng
which then acts separately on 7, and 7T_.

Theorem 2.6.1. The orbit space [T] of T under £S5 = Dg is the set of similarity classes
of triangles.

Proof. Let Ay = A[61,05,03] and Ay = A[w1,99,13]. Write Ay = Ay for similar, and
[A1] = [A»] for same orbit. Then

Ay = Ay & 2{01,05,03} = {tp1, 92,903} & o (V1,¥2,73) = £(0,(1),05(2), 0o(3))
= [A]=[A,]
O

2.6.2. Triangle Multiplicities. The differences in symmetry distinguish the scalene, right,
isosceles, and equilateral degenerate and nondegenerate triangles, and this is measured by
the sizes of their stabilizer subgroups.

Definition 2.6.3. The multiplicity mult(A) of A € T is the order of stab(A) < +S3 = Dg.

Theorem 2.6.4. The multiplicities of similarity classes of labeled, oriented, possibly
degenerate triangles are as follows.

(a) The degenerate equilateral triangle has multiplicity 12.
(b) The two nondegenerate equilateral triangles have multiplicity 6.

(¢) The three degenerate nonequilateral isosceles triangles have multiplicity 4.
(d) Degenerate scalene triangles each have multiplicity 2.

(e) Nondegenerate nonequilateral isosceles triangles each have multiplicity 2.
(f) Nondegenerate scalene triangles each have multiplicity 1.

Proof. We refer to Figure 2.7 and compute using Dg.

The degenerate equilateral A, is represented by any of the vertices in Figure 2.7, hence
its orbit has lenght 1, and it is fixed by Dg. Therefore mult(A.) = 12.
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The nondegenerate equilateral triangles Ag, and Apg_ are conjugate by the element 7’35,
and each has stabilizer (r*,s) = Dj, hence mult(Ag,) = mult(Ag ) = 6.

.21, ALZ,Z,0]} are

The degenerate nonequilateral isosceles triangles{ (0,7, 5], al3,
1 Cy X Cy, hence

- ()

Degenerate scalene triangles have orbits of length 6 under the elements of (r). The
stabilizer of A = Ala, 8,0] (with o, 8 # 0, £Z, +7) is stab(A) = (r®s), hence mult(A) = 2.

7—27—

conjugate by rotations. We compute stab(A[Z,Z,0])

272
mult(A[Z, 7,0]) = 4, and the others follow suit.

Nondegenerate nonequilateral isosceles triangles have orbits of length 6 under (r). If
A € l¢ then stab(A) = (s), hence mult(A) = 2.

Nondegenerate scalene triangles A have orbits of length 12, and stabilizers
stab (A(«, 8,7)) = (e), where «, 8, v are distinct. Therefore mult(A) = 1. O

2.7. Measure. By Theorem 2.6.1 the similarity classes of triangles are repeated in
T according to their multiplicity under the action of Dg. This motivates the following
definition.

Definition 2.7.1. Let F C T be a family of similarity classes of labeled, oriented triangles,
and let [F] denote the corresponding set of similarity classes in the orbit space [T] = T/ Ds.
The relative measure of [F] is

#([F]) = mult(A) - |F|

where |F| is the Euclidean measure in 7 under the metric of 7 defined by p: T, u7T_. — T
in Definition 2.4.2, and A € F is a generic element.

The relative measure of a two-parameter family is given by its Euclidean measure, since
all generic points of such families have multiplicity one.

Theorem 2.7.2. Let O,A/I,R,D,0l Al be the families of similarity classes of labeled,
oriented triangles in T that are obtuse, acute, isosceles, right, degenerate, obtuse isosceles,
and acute isosceles, respectively. Then the relative measures are

C

Figure 2.8. The Flat Torus T
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(2) w(T) = V3r%; u(0) = 2B7%; p(A) = L7,
(b) (1) = 6v6m: u(R) = 3v2n: u(D) = 652 and u(O1) = u(Al) = 3.

In particular we have the following ratios:

[O:A]=[3:1] [I:All=]lI:01]=[2:1] [1:R]=[2v3:1] [D:R]=[2:1]

Proof. Using Figure 2.8 we easily compute |T| = 377, |O] = %:?WZ, and |A| = ‘/TEWQ.
Generic elements of these two-parameter families all have multiplicity one, so these are the
relative measures as defined in Definition 2.7.1.

For the one—parameter families we compute |I| = 3V6xr, |R| = 3v2r, |D| = 3V2nw,
|Ol] = 26 and |All = 26 Generic degenerate elements, which are scalene, and
generic nondegenerate isosceles both have multiplicity two, and a generic right triangle
has multiplicity one, by Theorem 2.6.4. Therefore the relative measures are as stated in
these cases. For obtuse and acute isosceles triangles the multiplicites are 2, so they have the
same relative measure 3v6mr. The ratios follow immediately. O
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3. THE SPHERE OF TRIANGLES

One natural way to consider triangles is as triples of vertices. We show that the parameter
space of triangles up to similarity in this notion is a sphere. This is known result (see
[ES15, CNSS19]) that we discovered independently, and we provide the explicit description
for the sake of concreteness.?

3.1. Terminology & Definitions.

Definition 3.1.1. A triangle is a point (A, B,C) € (C3, where each coordinate is a vertex
of the triangle in C.

Thus C*is a parameter space of labeled triangles. But C? includes points not traditionally
thought of as plane triangles.

Definition 3.1.2. A triangle is degenerate if its area is zero. A triangle is nondegenerate
if it has nonzero area.

Moreover, a degenerate triangle (A, B, C) € C* is of
(a) multiplicity 1 if A, B, C are distinct collinear points.

(b) multiplicity 2 if exactly two of the vertices are equal.
(¢c) multiplicity 8 if all three vertices are equal.

A triangle is nontrivial if it is not multiplicity 3 degenerate. See Figure 1.1.

Now we understand C” as a space of degenerate and nondegenerate triangles. To formalize
our notion of similarity, we must first make another definition.

Definition 3.1.3. A nondegenerate triangle (A, B,C) € C?is positively (negatively) oriented
if the curve A - B — C' — A of line segments in the complex plane is positively (negatively)
oriented.

Now we are ready to consider similarity classes of triangles in c.

Definition 3.1.4. Let p = (4, B,C) € C® be a triangle. Let V, = C - (1,1,1), and let
Vp, = C-p. The (labeled) similarity class of p is

[p]= (Vo +V;) = Vo

Equivalently, [p] = {zp + t(1,1,1) : z € C*,t € C}.

W corresponds to all possible translations of p, and V), corresponds to all possible rotations
and dilations of p, which is captured by complex scaling. Since this construction does not
allow for reflection, we are considering direct similarity. We remove V[, as nondegenerate
triangles should not be similar to degenerate triangles.

2This section is the result of the a 2023 Frost Summer Undergraduate Research Program project
supervised by Eric Brussel that myself, Elijah Guptill, and Kelly Lyle participated in.



20

3.2. Group action on [p]. We imagine two triangles to be similar to each other if one can
be scaled, rotated, and translated to agree with the other. We formalize this notion using
group actions.

Consider the group C x C*, with group action
(r,2)(7,2) = (76.(7), 22"),
where h : C* — Aut(C) is given by h(z) = ¢., and ¢.(7) = 2.
C x C* acts on similarity classes as follows:
CxC" x[p] - [p]
((r,2),(A,B,C)) > (2A+1,2B+7,2C + T)

Proposition 3.2.1. Letp € C® be a nontrivial triangle. Then [p] is a principal homogeneous
. 2 *
space for Sim(R“) =CxC".

Proof. Suppose (7,z)-(A,B,C) = (A, B,C) for some (A, B,C) € [p]. By the group action
defined above, we see that (zA + 7,2B + 1,2C + 1) = (A, B,C), and so

T=A(l-2)=B(1-2)=C(1-2).

If 2 =1, then 7 = 0. If z # 1, it follows that A = B = C, which contradicts the assumption
that [p] is a similarity class of nontrivial triangles. Thus (7,2) = (0,1), and so the action
is free. From the definition of [p], it is clear that the action is transitive. O

3.3. Space of Triangles up to Similarity. We have established that a given similarity
class of a nontrivial triangle p is a two C-dimsensional subset of C*. To construct our
space of similarity classes, we first mod out by translation, as follows. This is a short exact
sequence.

0—> Vo —> C——C/Vp —> 0

We apply the dual functor, which gives us the following sequence of dual spaces.

0 < (Vo)* < C* ¢ (C/Vy)* +—0

The elements of (C*/V;)* are maps on C* that are well-defined on Vj, and so the kernel
of these maps must be V. ((Cg/Vo)* is precisely the plane z +y + z = 0 in (CS, the plane
with normal vector (1,1,1).

To summarize, modding out by translation amounts to the following map
C* ~ (C°[V)"
(A,B,C)» (B-C,C—-A,A-B)

where the image of (4, B,C) in (C*/Vy)* is (A,B,C) x (1,1,1). This is a linear
transformation given by multiplication on the left by
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Since dim ¢(C?/Vp)* = 2, we would like to map to C°. We do so by multiplying on the
left by M € SO(3) given by

13+V3) H-3+v3) -%

(3.3.0.1) M= %(_3;\/5) %(31:\/3) _jg
V3 V3 V3

which rotates \/ig(l, 1,1) to (0,0,1), and then only considering the first two coordinates.

Since this is a linear isometry, it will not “disturb” the similarity classes, so to speak.

We have constructed C” as the set of labeled triangles up to translation. To construct
our space of similarity classes, we must mod out by rotation and dilation, which amounts
to modding out by complex scaling. Fortunately, this is quite simple, as we simply consider
the set of all complex lines through the origin in C®, known as Gr(1,C?).

It is known that Gr(1,C?) = P'(C) = 5%, so our moduli space of labeled triangles up
to similarity is a 2-sphere. To construct an explicit map, we endow C? with the algebraic
structure of the quaternions H.

The quaternions are a 4-dimensional real vector space with basis {1, 1, j,k}, and they can
be multiplied in the sense that

ij = k, jk =1, ki=j.
Thus they form a 4-dimensional R-algebra, with the real quaternions coinciding with the
center.

We can construct H from C? using the Cayley-Dickinson construction [Bae02, Sec. 2.2].
This will give us a canonical identification between C? and H Explicitly, define the map

C’>H
(a,b) » a + bj.
Addition is component-wise, and multiplication is defined by
(a,b)(c,d) = (ac — bd, ad + bc)
The norm of (a,b) is |a|® + |b]?, and we see that

-1 _ (67 —b)

(@.b) " = @ or

One can check that these operations endow C? with the algebraic structure of H. Now
for our explicit map.

Definition 3.3.1. The Hopf map h : C? > C%is a left-adjoint action on C® On
. . -1, . o
quaternions, this is the map r = r “ir. Explicitly, h is given by

h:C®
(a,b) = (a,0) ™" (1,0)(a, b).
Note that this is precisely the famous Hopf fibration [Lyo03].
Lemma 3.3.2. The Hopf map h is well-defined on Gr(1,C?).
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Proof. Let (a,b) € C*, and let A € C. The scalar A embed in C? as (), 0). Then
h((A,0)(a,b)) = [(X,0)(a,5)]7"(1,0)[(X,0)(a,b)]
= [(Aa, \b)]17"(i,0)(Aa, Ab)
(Aa, =Ab)(i,0)(\a, \b)
[(Aa, \b)|?
_ P(al” - 181)i, 2abi)
IA1?](a, b)[?
_ ((al® = 151)i, 2abi)
|(a,0)|?
(a,b)™"(i,0)(a,b)
h((a,b)).

O

Observe that the image of C? under h is contained in the pure imaginary quaternions
Im(H), since Re((|a|* - |b]*)i) = 0.

Since the norm defined above is multiplicative,
|h(a,b)] = |(a,b)™" (3,0)(a, b)| = |(3,0)] = 1.
Therefore the image of C? under h is the imaginary quaternions of unit length. This set
is a sphere S?. To realize this S° as a subset of Euclidean space, we use the canonical map
Im(H) -» R®
(i,j. k) P (x,y,2).
Summarizing, we see that we have proved the following theorem.

Theorem 3.3.3. The set of similarity classes of triangles when considered as ordered triples
of vertices is a sphere. An explicit parameterization is given by
p: c® >R
(A,B,C)» i(h(M(B-C,C—-A,A- B))),
where M is the linear isometry in Equation 3.5.0.1, h is the Hopf map from Definition 3.3.1,

and i : Im(H) - R? is the canoncial isomorphism between the pure imaginary quaternions
and R®. Moreover, p(C*) = §* in R®.

Remark 3.3.4. We compute the stabilizer subgroups of our similarity classes r € S?. Since
the Hopf Map is a conjugation map, these are precisely the centralizer subgroups C(r), the
set of elements in H that commute with 7.

Proposition 3.3.5. Let r € S° ¢ Im(H). The centralizer C(r) of r is a field isomorphic
to C.

Proof. One can represent quaternions in scalar-vector form, where (¢,v) € RxR?. Multiplication

of quaternions is then given by

(t1,v1)(t2,v2) = (ti1ty — vy * Vo, t1vg + tovy + vy X V3),
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where we use the standard dot and cross products in R,
Let (t,v) € R x R® =~ H. Write r = (0, u), where |u| = 1. Then
(t,v) € C(r) = (0,u)(t,v) = (t,v)(0,u)
= (—u-v,tut+uXv)=(-u-v,tu+vXu)
= uXv=vXu

< u and v are parallel.

It follows that v = Au, where A € R. Consider the function
f:C(r)y->=C_
(t, d\u) >t + Ai

We see that f is a group homomorphism. To see that f is a ring homomorphism, let
(s, Au), (t, pu) € C(r). Since u is a unit vector, it follows that

Fl(s, Mu)(t, pu)) = f(st = (Ap)u - u, spu + thu + (Ap)u X u)
= f(st— A, (sp + tA\)u)
= (st — M) + (sp + tA)i
= (s + Ai)(¢ + pi)
= f(s, M) f(t, pu).

f is clearly bijective, and so C(r) is isomorphic to the field C. O

3.4. Distinguished Families on the Sphere. We visualize the sphere of triangles using
Mathematica in Figure 3.1 and make some observations.

(a) zz-plane (b) Side view (¢c) xy-plane

Figure 3.1. The Sphere of Triangles. The positively and negatively oriented
triangles lie on the yellow and gray hemispheres, respectively. The isosceles,
right, and degenerate triangles lie on the blue, black, and red curves,
respectively.

Proposition 3.4.1. Relative to Figure 3.1, we see that

(a) The degenerate triangles (red curve) lie on a great circle. The positively and negatively
orientated triangles lie on the yellow and gray hemispheres, respectively.

(b) The three blue curves of isosceles triangles correspond to which of the three vertices is
the isosceles vertex of the triangle. They are each great circles passing through both

poles.
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(c) The positively oriented equilateral triangle sits at the point (—1,0,0) the intersection of
the three blue isosceles curves. The negatively oriented equilateral triangle is at (1,0,0).

(d) The right triangles (black curves) trace out circles of radius ‘/?3 that bound spherical
caps.

(e) The obtuse triangles lie on the spherical caps bound by the right triangles. The acute
triangles lie in the spherical triangles at each pole.

(f) The six right isosceles triangles are at the six intersection points of the isosceles (blue)
and right (black) curves.

(9) The three multiplicity 2 degenerate triangles lie at the three tangent points of the black
circles, which lie on the degenerate red curve as well.

(h) The three multiplicity 1 degenerate triangles where the center vertex is centered between
the two other vertices lie at the three points where only the blue and red curves intersect.

Proof. Let D; Ra,Rg, Rc; Ia, Ig, Ic be the labeled, oriented similarity classes of degenerate;
right triangles with right angle at vertex A, B, C; and isosceles triangles with the vertex
angle at vertex A, B, C, respectively.

We get the following parameterizations of certain distinguished families of triangles. For
the parameterization, let R = R U {oo}, where we define the value at infinity to be the limit
as t - 00. We compute that

D = {[(0,¢,1)] : t € R},

la = {[(t,i,—i)] : t € R},

lg = {[(=i,t,4)] : t € R},

lc = {[(i,—i,1)] : t € R},
Ra = {[(0,t,)] : t € R},
Rg = {[(i,0,t)] : t € R}, and
Rc = {[(,4,0)] : t € R}.
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Using the map p from Theorem 3.3.3, we compute the images of these families on S? in
3
R”, and find that

p(D)={( V3(£2 = 2t) 0 t2+2t_2)))eR3:teR},

22 —t+1) T2(t2-t+1

pla) = {(_\f(iﬁ:;)) ’ _t22\/+§1;>’ 2;;2;33)) €R':te R}’
(Ie) = {(‘/25(5;2;33)) ’ _t22\/+§g’ 252133)) €R:te R} ’

p(lc) = {(0, —%, Z—;g) eER’:te R},

P(Ra) = {(Q(ffl)’_t;/ftl’ 2(t;_+21)) R :te R}’

p(Rg) = {(_2@;/3 1),—t;/ft1, 2_(?;:11)) eR’:te R}, and

p(Re) = {(—ﬁi‘s),—tftl,%) €Rite R}.

It is easy to see that p(D) lies on the plane i = 0. Since this is a plane through the origin
in R*, we conclude that p(D) is a great circle of the sphere, which proves observation a.

Similarly, observe that p(ln),p(lg), and p(lc) lie on the planes z = —vV3z, z = V3z,
and z = 0, respectively. Since these are all planes through the origin, we conclude that the
isosceles families are great circles of the sphere, proving observation b. To see the equilateral
points, we compute that p(1,w,w?) = (0,0, —1) and p(1,w*, w) = (0,0,1), where w = 2mi3,
Note that both points lie on p(l14),p(Ig), and p(l4), proving observation c.

Observe that p(Ra), p(Rg), p(Rc) lie on the planes z = V32 -1, z = =3z -1, and z

respectively. Furthermore, p(Ra) and p(Rg) both satisfy the equation y° + %L(z + %1)2 =

which means they trace out circles of radius ‘/75 centered at (i‘/rg,

. . L . . 2 2 . .
is much easier to recognize; it satisfies the equation =~ + y* = %, thus tracing out a circle of

radius ‘/75 from center (0,0, %) This proves observation d.

leoo =

7

47
0,— }1 ), respectively. p(Rc)

Note that the equilateral triangles lie outside the three spherical caps bounded by p(Ra),
p(Rg), and p(Rc). By the logic of the projection, observation e holds.

Observations f, g, and h follow by simple computations of where p sends representative
triangles in the respective similarity classes.

O

3.5. The Measure. The sphere S? has a standard spherical area measure, which induces
a measure on the set of similarity classes.
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Definition 3.5.1. Let F be a family of similarity classes of triangles. Then the measure
1(F) of F is the standard spherical measure on S ? IfdimF = 1, this is great circle distance.
If dim F = 2, this is surface area on the sphere.

Since our space of labeled similarity classes of triangles, 5’2, is compact, we can put the
uniform measure on it, which allows us to answer the original question posed by Lewis
Carroll: What is the probability that a random triangle is obtuse? [Woo61].

Theorem 3.5.2. Let T,A,0,D,l,R,Al, Ol be the families all, acute, obtuse, degenerate,
isosceles, Tight, acute isosceles, and obtuse isosceles triangles, respectively. Then

(a) u(T) = 4m, u(A) = 7, u(0) = 37, and
(b) (D) = 27, (1) = 67, u(R) = 3v3r, u(Al) = 4x, u(Ol) = 2.

It follows that
[0:A]=3:1 [Ol:AI]=1:2 [1:R]=2:V3 [D:R]=2:3V3.

Proof. The surface area of 5% is 4m. Since the obtuse triangles are mapped to the three
spherical caps bounded by the right triangles, it suffices to compute the area of said caps.
1

The height of each cap is 5, and so the surface area of an individual cap is w. There are

three such obtuse caps, and their total area is 37. The remaining area is acute triangles.

Observe that D is a single great circle, and | is three distinct great circles. R is three

distinct circles of radius ‘/75 1(Ol) is the length of the great circles passing through the

spherical caps of height %
The ratios are computed as is appropriate. 0

Remark 3.5.3. The ratio [O : A] agrees with the ratios given by the torus of trianlges (see
Theorem 2.7.2), and the ratios computed in [Por94], [ES15|, and [CNSS19]. The torus of
triangles gives that [Ol : Al] = 1 : 1, which disagrees with the sphere ratio 2 : 1.

3.6. Additional Properties. What follows is a collection of additional observations about
the sphere of triangles.

3.6.1. Interpretations of the Coordinates. We map a similarity class of triangles to a point
in R® of length 1. Are there geometric interpretations of the different coordinates?

Proposition 3.6.2. Let p € C? be a triangle with side lengths a,b,c = 0 that satisfies
a®> +b°+c* =1. Then the image of p on 52 s

im(p) = (V3(a® = b°), =4V3 area(p), 2¢> — a” = b°).

The statement about the area being proportional to the y-coordinate confirms a result
in [CNSS19].

Proof. The result follows by computation and utilizing the formula for the area of the
triangle given by

. A

area( AABC) = %det B

C

Ql | |

1
1
1
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Corollary 3.6.3. Let p = (A, B,C) be a triangle with side lengths a,b, ¢ satsifying a” +b° +

¢ = 1. If h(p) satisfies

(a) y =0, then area(p) = 0, implying that p is a degenerate triangle;
(b) x —V/3z, then b = ¢, and so p is isosceles with vertex angle at A;
(c) x V3z, then a = ¢, and so p is isosceles with vertex angle at B;
(d) x =0, then a = b, and so p is isosceles with vertex angle at C;

(e) z=+/3x -1, then b+ = a2, and so p is right with right angle at A;
(f) z=—=V3xz -1, then a® + ¢ = b2, and so p is right with right angle at B;
(9) z = %, then a® + b = 62, and so p is right with right angle at C;

(h) z =0, then a® +b® =2¢%. We call p an “anti-isosceles” triangle.
Proof. Combine the result of Proposition 3.4.1 and Proposition 3.6.2.

3.6.4. Antipodal Triangles.

Proposition 3.6.5. Let (A,B,C) € C? be a triangle. Then the images of the triangle
(A,B,C) € C* and its conjugate dual triangle (B — C,C — A, A — B) € C® under the hopf

map h lie on antipodal points of the sphere.

Proof. The result follows immediately from applying p to the triangle (A, B,C) and

(B-C,C - A, A-B).

|

Note that the conjugate dual triangle of (A, B, C') takes the directed opposite side vectors

a=B-C,b=C-A, and ¢ = A — B and conjugates them.
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